Glutamate-354 of the CP43 polypeptide interacts with the oxygen-evolving Mn4Ca cluster of photosystem II: a preliminary characterization of the Glu354Gln mutant.
نویسندگان
چکیده
In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O2 release are essentially unchanged and the O2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S2-minus-S1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O2 with normal O2 release kinetics and a majority fraction unable to advance beyond the S2 or S3 states. The S2-minus-S1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S1-->S2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S1 and/or S2 states.
منابع مشابه
Light-Induced Oxidative Stress, N-Formylkynurenine, and Oxygenic Photosynthesis
Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII). Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK), of W365 in the CP43 subunit. The y...
متن کاملStructural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting.
Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the...
متن کاملLocation of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography.
The chloride ion, Cl(-), is an essential cofactor for oxygen evolution of photosystem II (PSII) and is closely associated with the Mn(4)Ca cluster. Its detailed location and function have not been identified, however. We substituted Cl(-) with a bromide ion (Br(-)) or an iodide ion (I(-)) in PSII and analyzed the crystal structures of PSII with Br(-) and I(-) substitutions. Substitution of Cl(-...
متن کاملTheoretical EXAFS Studies of a Model of the Oxygen-Evolving Complex of Photosystem II Obtained with the Quantum Cluster Approach
The oxygen-evolving complex (OEC) of photosystem II is the only natural system that can form O2 from water and sunlight and it consists of a Mn4Ca cluster. In a series of publications, Siegbahn has developed a model of the OEC with the quantum mechanical (QM) cluster approach that is compatible with available crystal structures, able to form O2 with a reasonable energetic barrier, and has a sig...
متن کاملSubunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 363 1494 شماره
صفحات -
تاریخ انتشار 2008